SELF-SIMILAR PROBLEM OF THE NONISOTHERMAL
BOUNDARY LAYER OF DILUTE SUSPENSIONS OF.
RIGID ELLIPSOIDAL PARTICLES
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and V. M, Yashin

A numerical solution is obtained for the self-similar problem of a plane nonisothermal bound-
ary layer of dilute suspensions of rigid ellipsoidal particles.

Let us consider the plane steady laminar flow of a dilute equal-density suspension of rigid ellipsoidal
particles near a hot or cold solid wall. Let us hence assume that the heat being liberated because of viscous
dissipation is negligible (the Prandtl number of the suspension is Pr = 5.8); the coefficient of thermal con-
ductivity of the suspension A is a physical constant [1].

At high Reynolds numbers it is natural to consider the flow in the boundary-layer approximation. The
equations of an isothermal boundary layer have been obtained in [Z] and are
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In the nonisothermal flow case, the system (1), (2) should be supplemented by the energy equation
which is written in the approximation taken as follows:
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Neglecting singularities of the interaction between the suspended particles and the walls, let us take the
boundary conditions of the boundary-value problem (1)-(3) as

u=0=0, T=T,x) foo y=0,

(4)
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Let us use the distribution functions of the elevations of the particle axis of symmetry, obtained for
simple shear flow u = Ky, v=w = 0, K= const [3, 4, 5] by replacing K by du/dy [2, 6], in taking the average
in (1),

The nonisothermy of the flow is reflected in the temperature dependence of the dynamic coefficient of
viscosity of the solvent pg [7] and the coefficient of rotational particle diffusion Dy [8], which are in the rhe-
ological constants p, i1, M and W 3:
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As in the case of a Newtonian fluid, let us seek self-similar solutions of the problem (1)-(4) by giving
the external flow velocity and the wall temperature distribution as
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U=cxm, Tyu)=Te+ Tyx" (6}
(c, m, T, and n are constants).

Introducing the stream function ¥ and going over to the new variables £, &, §, connected with ¢, x, y,
¥, T by the relationships
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it can be shown that (1)-(3) have a unique self-similar solution for m =1/3, n = 0. The self-similar problem
is formulated as follows:
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The prime denotes the derivative with respect to the self-similar variable £.

The energy equation (9) has the following solution:
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The boundary-value problem for the integrodifferential equation obtained after substituting (11) into (8)
was solved by numerical iteration, Taken as 67(0) in each iteration is the value of this function computed by
means of the distribution & (£) obtained in the previous iteration. Then the value of &"(0) was selected by 2
"ranging" method so that the boundary condition for &' would be satisfied as £ — «. The Cauchy problem
for known 8'(0) and & ™(0) was solved by a modified Runge~Kutta method with variable spacing [9].

The results of computing &'(£) and u of{é) for aqueous suspensm?s of rigid ellipsoidal particles are
represented in Fig. 1A, B for the following values of the parameters r =V ab? =107°¢ m; a/b = 10, 25; ¢ =
0.01; Pr=5.8; T =300°K, solid lines —T,=280°K, dashed lines— Ty, =320°K.

The characteristics of isothermal and nonisothermal boundary layer of a solvent and suspension are
compared in Table 1, where
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TABLE 1. Comparison between Isothermal and Nonisothermal
Boundary-Layer Charactenstlcs of a Solvent and Suspension for
Pr=5.8; ux = 8.595-1074 N sec/m?; T, = 300°K.

Suspension p=i0
T,,=320 °K A, % T==300 °K A% Tp=280 °K A, %
" (0) 1,176 —4,60 | 8,857.10-1| —4,53 | 5,941.10-1! —4,45
0’ (0) ~—1,074 —1,41 — —  |-9,268-10~1 —1,44
Ebd 2,761 6,28 2,914 6,09 3,084 5,60
EGT 1,543 1,32 — —_ 1,720 1,36
1e£6(0) 6,457.10-4) 11,23 | 9,517-10~4¢| 10,71 | 1,583.10-3| 10,17
Perfite (0) 7,511.10-1| 11,23 1,107 10,71 1,841 | 10,17
A 7,372.10~1 5,87 | 8,485.10~1 5,49 | 9,923.10-1 4,97
B 3,421.10-1 6,25 | 3,706-10-1 5,85 | 3,980.10-! 5,31
c 1,854.10-1| —I1,35 — — 1,598.10-1 ) —1,44
F 8,837.10-1 6,12 | 9,818.10-1 5,83 1,094 5,27
Suspension  p=25
Typ=320 °K A, % | Typ=300°K A Y T,y==280 °K A%
D7 (0) 1,112 —9,74 | 8,522.10-1| —8,14 | 5,726.10-1 | —7,91
6 (0) —1,062 —2,5¢ — —  |—9,157-10~Y —2,62
§5d 3,087 18,84 3,233 17,68 3,408 16,68
Eér 1,561 2,53 — — 1,741 2,56
pers(0) 7,255.10-¢| 24,99 | 1,060.10~3; 23,33 | 1,749.-10-3| 21,74
Beff/14(0) 8,441.10-1| 24,99 1,233 23,33 2,035 21,74
A 7,885.10-1 13,24 | 9,008-10-1} 11,99 1,047 10,78
B 3,720.10-1| 15,54 | 3,997.10-*| 14,16 | 4,273.10-1| 13,05
c 1,829.10-1| —2,65 —_ — 1,578.10-1 | —2,62
F 9,394.10-1] 12,82 1,051 13,30 1,165 12,11

The relative deviations of the boundary-layer parameters of the suspension from the corresponding Newton-
ian fluid (solvent) parameters are denoted by A, %.

The results presented show that the boundary-layer thicknesses 64, 6T, 6%, 6%*, 6 and the friction
stress Ty inthe suspension are greater than in the solvent, where this dlfference increases with the growth

in the elongation p = a/b of the suspended particle.

NOTATION

U, velocity on outer limit of boundary layer; Pr = u y/pa, Prandtl number of the suspension; p, density of the
suspension; u, v, velocity components of the suspension in an orthogonal x0y coordinate system ordinarily
used in boundary-layer theory; u, i, Ka, U3, rheological constants, known functions [2] of parameters char-
acterizing the suspension;ny,ny, components of the unit orientation vector directed along the axis of sym-
metry of the suspended particle; (), symbol of the averaging performed by using the distribution function of
the elevations of the axis of rotation of the suspended particle; a, coefficient of thermal diffusivity of the
suspension; T, absolute temperature of the suspension; T, temperature of the solid boundary; Te, temper-
ature of the suspension in the outer flow; k, Boltzmann constant; V, volume of the ellipsoidal particle;

p = a/b; a,b, the major and minor semiaxes of the ellipsoidal particle; pux, coefficient of dynamic viscosity
of the solvent for T = T3 £, dimensionless independent variable; &, dimensionless stream function; 0,
dimensionless temperature; i off, effective viscosity of the suspension; 64, dynamic boundary-layer thick-
ness; O, thickness of a temperature boundary-layer; 6*, displacement thickness; 6**, loss of momentum
thickness; 6%¥, "mixed thickness"; 7, friction stress on the wall.
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VISCOELASTIC BEHAVIOR OF MINERAL OILS AT
HIGH PRESSURE

B. P. D'yachenko, A, P, Starostina, UDC 532.135
and A, I. Moiseev

Results of an experimental study of shear viscoelasticity of mineral oils and a method for ap-
proximating liquid relaxation spectra by a generalized Maxwell model are presented.

The stressed state of an oil layer in a heavily loaded rapidly moving elastohydrodynamic friction-pair
contact can be described by the assumption of delay in establishment of equilibrium viscosity upon a sharp
change in pressure in the contact zone [1, 2, 3].

The representation of liquid structural equilibrium-delay processes by the Frenkel'—Obraztsov model
for gradual pressure change [2] leads to the expressions for viscosity at the contact:

M = 1, exp aP; exp (— PaP,) (1)

and delay time:

. T
frot == G. exp abP;. (2)
The parameter §8 is defined in [2] from the equation
' ot . .
Gt g (BaPy) — Ei (ByaPy). (3)
M, €Xpaly

Here Ei(SiaPy) is an exponential integral, which considers the loading prehistory.

In Eqgs. (2) and (3) there appears the value of the instantaneous shear modulus of elasticity G., which
can be obtained from study of liquid relaxation spectra.

It is known [4] that mineral oils have continuous relaxation spectra encompassing not less than 5-8
frequency decade. A phenomenological representation of this behavior in mineral oils is possible within .
the framework of the generalized Maxwell model. For this model the most general form of the complex
modulus of elasticity expanded into the relaxation time spectrum was employed:

- o RS n;
= »G == —i G '—'_l"“‘.
G. G‘j°+l N Z 1+m2rf l+1még 1+ o ()

=1 {=]
The components of the complex modulus of elasticity GuJ and GN were measured at pressures to

6-108 N /m? at temperatures of 17-100°C by quartz torsional oscillation resonators at {requencies of 23, 43,
80, and 126 kHz by the method described in {5]. Since this frequency interval does not include the range
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